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Introduction

• The Experimental Breeder Reactor-II
(EBR-II) was a metallic fueled,
sodium cooled fast reactor operated
at Argonne National Laboratory-
West (currently Idaho National
Laboratory) from 1963-1994.

• This reactor was fueled with a
sodium-bonded, uranium-zirconium
alloy fuel.

Element Weight %1 Ion

U 80.596 III

Zr 10.805 IV

Na 2.160 I

Nd 0.930 III

Mo 0.771 III

[1] S.X. Li & M.F. Simpson, Journal of Minerals & Metallurgical Processing, 22(4), 192-198 (2005).3

• An electrochemical process was developed by Argonne
National Laboratory to treat this stainless steel clad driver fuel.

• This electrochemical process is currently being used at Idaho
National Laboratory to treat the used EBR-II driver fuel.



EBR-II Used Fuel Treatment Process
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• Cathode

 U3+ + 3e- → U

 Zrn+ + ne- → Zr

• Cathode

 U3+ + 3e- → U

• Anode

 U → U3+ + 3e-

 Zr → Zrn+ + ne-

Mark-IV Electrorefiner (ER)
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Motivation and Goal

• Zirconium constitutes a large amount of the EBR-II used driver
fuel at greater than 10 wt%.

• Over time, zirconium metal tends to build up within the Mark-
IV ER and must periodically be removed.

• In developing a process to electrochemically recover pure
zirconium, a knowledge of the Zr redox reactions that occur in
the ER is necessary.

• To better understand this process, modeling is essential.

• In the electrochemical modeling process, there are several
thermodynamic and electrochemical values that are required.

 Standard Reduction Potential, E0

 Diffusion Coefficient, D

 Activity Coefficient, γ
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• Nernst Equation:

• What is the standard reduction potential, E0?

 The standard potential is the equilibrium potential, E,
of a given reduction reaction (i.e. Zr4+ + 4e- → Zr) at 
standard conditions.

• Pure substance at 1 atm pressure

– γ = 1 and Xs = 1

 This is related to the Gibbs free energy change of the
same half-cell reaction.

 s
0 Xln

nF

RT
EE 

Standard Reduction Potential

00 nFEG 

E Equilibrium potential

E0 Standard reduction potential

R Ideal gas constant

T Absolute temperature

n Number of transferred electrons

F Faraday’s constant

γ Activity coefficient

Xs Mole fraction at interface

DGi
0 Gibbs energy change of reaction i
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• Mass Transfer:

• What is the diffusion coefficient?

 Proportionality constant between molar flux and concentration
gradient.

• Fick’s 1st Law:

 Follows the Arrhenius temperature dependence.
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Standard Reduction Potential, E0

(V vs. Ag/AgCl)
Diffusion Coefficient,

D (cm2/s)
Activity Coefficient, γ

Zr(IV)/Zr Zr(IV)/Zr(II) Zr(II)/Zr Zr(IV) Zr(II) Zr(IV) Zr(II)

[2] -1.22* --- -1.12 --- --- 9.6  10-6* 3.4  107

[3] -1.064* -1.121* -1.01* --- --- --- ---

[4] -0.838 --- -0.722 --- --- 3.081  10-3* 1.05  10-4*

[5] -1.064* -1.121* -1.007* --- --- --- ---

[6] -1.333* --- --- --- --- --- ---

[7] -1.1 --- --- --- --- --- ---

[8] -1.22 --- --- --- --- --- ---

[9] --- --- --- --- --- 4.48  10-3 1.9  10-4

[10] --- --- --- 1.13  10-5 --- --- ---

[11] 4.5310-6 – 1.1010-7

* Values reported are at 450 °C.

[2] R. Baboian, et al., J. Electrochem. Soc., 112.12 (1965).

[3] J.A. Plambeck, J. of Chemical and Engineering Data, 12(1) (1967).

[4] R. Ahluwalia, et al., Nucl. Tech., 126 (1999).

[5] A.J. Bard, “Encyclopedia of Electrochemistry of the Elements, Vol. X, Fused
Salt Systems, p. 68, Marcel Dekker, Inc., New York (1976).

[6] M. Iizuka, et al., J. of Nuclear Materials, 297 (2001).

[7] T. Murakami and T. Kato, J. Electrochem. Soc., 155(&) (2008).

[8] A.V. Bychkov, Proceedings of the Workshop on Pyrochemical Separations,
Avignon, France, March 14-16, 2000.

[9] R.K. Ahluwalia, et al., Nucl. Tech., 133 (2001).

[10] D. Yamada, et al., J. Alloys and Compounds, 444-445 (2007).

[11] C.H. Lee, et al., J. Electrochem. Soc., 159(8) (2012).

Available Literature Values
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Experimental Setup

(a) (b) (c) (d)

(e)

(g)

(a) Al2O3 sheathed thermocouple
- Monitored with Fluke 52II

(b) Tungsten working electrode
(c) Ag/AgCl reference electrode

(5 mol%)
(d) Glassy carbon counter electrode

lead

(e) Glassy carbon crucible/counter
electrode

(f) MgO secondary crucible
(g) Eutectic LiCl/KCl salt containing

ZrCl4

(h) Furnace
- Kerrlab with graphite crucible

(f)

(h)
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Procedures

• Loading LiCl/KCl eutectic and ZrCl4

 (1.0, 2.5, and 5.0) wt% ZrCl4

 LiCl/KCl eutectic, 44/56 wt% (Sigma-Aldrich,
99.99%)

 ZrCl4 (Alfa Aesar, Reactor Grade, 99.5+%)

• Heating salt at 4 C/min to 500 C (±2) in the salt.

• Lowering electrodes into the molten salt.

 Tungsten Working Electrode

• d = 2.0 mm (Alfa Aesar, 99.95%)

 Glassy Carbon Counter Electrode Lead

• d = 3.0 mm (HTW-Germany)

 Ag/AgCl Reference Electrode

• Ag wire, d =1.0 mm diameter (Acros
Organics, 99.9%)

• 5 mol% AgCl in LiCl/KCl (Alfa Aesar,
ultradry, 99.997%)
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• Samples taken for ICP-MS analysis.

 Mixed:

• 1.0 wt%

• 2.5 wt%

• 5.0 wt%

Electrochemistry

• Cyclic Voltammetry

 Scan range: 0 V to -2.4 V

 Scan rate: 300 mV/s to 2.0 V/s

• Chronopotentiometry

 Driving current: 70 mA to 300 mA

 Analysis Results:

• (0.954 ± 0.117) wt%

• (2.49 ± 0.304) wt%

• (4.84 ± 0.585) wt%
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Chloride Salt Ingots

Pure LiCl/KCl Eutectic 1.0 wt% ZrCl4

2.5 wt% ZrCl4
5.0 wt% ZrCl4
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Cyclic Voltammetry (CV)

• A common electrochemical technique that can be
used to determine the reactions that can occur in the
electrochemical cell.

• Potential is scanned through the range of interest and

current is measured.

 Potential Range Scanned: 0 V to -2.4 V

• Li+ Reduction: -2.561 V [12]

• Cl- Oxidation: +1.065 V [12]
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[12] H.A. Laitinen and C.H. Liu, Journal of the American Chemical Society, 80(5), 1015-1020 (1958).
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• From the resulting current, reaction information can be determined.

 Randles-Sevcik equation Delahay equation

 Equilibrium potential

 Apparent standard potential



• An electrochemical technique that can be used to determine the diffusion
coefficient of ions within the electrolyte.

• A large driving current is applied and the resulting potential is measured.

• To maintain the applied current, the potential drops to a value at which
ions of a given species are reduced.

• When the ion is fully reduced at the electrode surface the potential
drops to a potential at which the next ion will reduce.

• This creates a plateau in the measured potential.

• The duration of this plateau, or transition time, τ, is related to diffusion 
coefficient, D, through the Sand equation.

• From the resulting potential response, transition time and diffusion can
be determined.

Chronopotentiometry (CP)
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C

Peak
Diffusion Coefficient, D (cm2/s)

n = 1 n = 2 n = 3 n = 4

A 9.26  10-5 1.16  10-5 3.43  10-6 1.45  10-6

B 1.50  10-4 1.88  10-5 5.57  10-6 2.35  10-6

C 1.52  10-5 1.90  10-6 5.62  10-7 2.37  10-7

D 1.19  10-3 1.48  10-4 4.39  10-5 1.85  10-5

A Zr4+ + 2e- → Zr2+

B Zr2+ + 2e- → Zr

Zr4+ + 3e- →Zr+

C Zr+ + e- → Zr

Zr4+ + 4e- → Zr

D Zr+ → Zr4+ + 3e-

Zr → Zr2+ + 2e-
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Nernst Plot for Peaks B and D

R² = 0.9829
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• Apparent reduction potential:

E0 = -0.849 V (vs Ag/AgCl)

• Average number of electrons transferred in the reaction(s):

n = 1.71
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Chronopotentiometry (1.0 wt% ZrCl4)
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Summary

• An experimental setup and process has been designed to test
properties relevant to the electrochemical recovery of zirconium in
molten salt.

• Cyclic voltammetry has been performed on (1.0, 2.5, and 5.0) wt%
ZrCl4 in the molten LiCl/KCl eutectic salt at 500 C.

 Cyclic voltammograms show complex behavior of zirconium in
the molten salt with presence of ZrCl4, ZrCl2, and ZrCl.

 Range of diffusion coefficients in the LiCl/KCl eutectic was
determined.

• D = 2.37  10-7 – 1.48  10-4 cm2/s

 Apparent standard reduction potential was determined for one pair
of peaks.

• E0 = -0.849 V vs. Ag/AgCl

• Chronopotentiometry was performed and shows complex behavior.
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Standard Reduction Potential, E0

(V vs. Ag/AgCl)
Diffusion

Coefficient, D (m2/s)
Activity Coefficient, γ

Zr(IV)/Zr Zr(IV)/Zr(II) Zr(II)/Zr Zr(IV) Zr(II) Zr(IV) Zr(II)

[2] -1.22* --- -1.12 --- --- 9.6  10-6* 3.4  107

[3] -1.064* -1.121* -1.01* --- --- --- ---

[4] -0.838 --- -0.722 --- --- 3.081  10-3* 1.05  10-4*

[5] -1.064* -1.121* -1.007* --- --- --- ---

[6] -1.333* --- --- --- --- --- ---

[7] -1.1 --- --- --- --- --- ---

[8] -1.22 --- --- --- --- --- ---

[9] --- --- --- --- --- 4.48  10-3 1.9  10-4

[10] --- --- --- 1.13  10-5 --- --- ---

[11] --- --- --- 1.1010-7 - 4.5310-6 --- ---

* Values reported are at 450 °C.

[2] R. Baboian, et al., J. Electrochem. Soc., 112.12 (1965).

[3] J.A. Plambeck, J. of Chemical and Engineering Data, 12(1) (1967).

[4] R. Ahluwalia, et al., Nucl. Tech., 126 (1999).

[5] A.J. Bard, “Encyclopedia of Electrochemistry of the Elements, Vol. X, Fused Salt
Systems, p. 68, Marcel Dekker, Inc., New York (1976).

[6] M. Iizuka, et al., J. of Nuclear Materials, 297 (2001).

[7] T. Murakami and T. Kato, J. Electrochem. Soc., 155(&) (2008).

[8] A.V. Bychkov, Proceedings of the Workshop on Pyrochemical Separations, Avignon,
France, March 14-16, 2000.

[9] R.K. Ahluwalia, et al., Nucl. Tech., 133 (2001).

[10] D. Yamada, et al., J. Alloys and Compounds, 444-445 (2007).

This
Work

-0.849 (Effective) 2.3710-7 – 1.4810-4
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Future Work

• Further analysis of chronopotentiometry data.

• Further work with ZrCl4 at additional concentrations.

• Zirconium electrodeposition experiments with transparent setup
to analyze zirconium deposit morphology.

• Experiments to optimize/maximize zirconium recovery.

• Cathode material, operating temperature, applied potential.

• Electrochemistry experiments/analysis with UCl3 in LiCl/KCl
eutectic.

• Final phase of this work will explore the electrochemical
recovery of zirconium in the presence of uranium.
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Activity Coefficient

• Nernst Equation

• What is the activity coefficient, γ?

 A factor included in order to take account of deviations from
solution ideality in the liquid phase.

 It is related to the excess Gibbs energy, GE, the difference
between the actual and ideal Gibbs energy of a solution.

 It is defined as a ratio of the fugacity of the species in solution
and its mass fraction in solution times its pure species fugacity.

 s
0 Xln

nF

RT
EE 

 lnRTGE

xf

f̂


[31] J.M. Smith, H.C. VanNess, & M.M. Abbott, Chemical Engineering Thermodynamics 6th Edition, p. 406, McGraw-Hill, Boston (2001).

GE Excess Gibbs energy

Fugacity in solution

x Mass fraction in solution

f Fugacity of pure species

f̂

S1


